ENTED PROGRAMMING FOR SCIENTIFIC
Coprs. II: ExamprLES IN C++

By T. J. Ross,! Member, ASCE, L. R. Wagner,” and G. F. Luger®

AsstracT: This paper illustrates some specific numerical code applications using
an object-oriented programming (OOP) paradigm. It is the second of two papers
describing OOP issues for scientific-code development. A brief description is given
of an object library as well as some simple finite difference and finite element user
codes based on that library. The key to efficient OOP implementation in any
cnvironment is to conceive an effective object-oriented design of the physical prob-
lem and its mathematical abstraction in the first place. This design places a premium
on understanding the physical problem from the perspective of class structure.
inheritance. and communication. Some of the issucs that must be addressed prior
to the development of a truly successful OOP cnvironment for large-scale scientific
code development and employment arc discussed. Optimization issues of OOP in
general and the object-oriented programming language C++ in particular are
discussed. Our research suggests that there is a tremendous potential for OOP as
a development environment for scientific codes.

INTRODUCTION

Previous research efforts (Peskin and Russo 1988; Angus and Thompkins
1989; Forslund et al. 1990; Wagner et al. 1991; Filho and Devioo 1991)
discussed the use of object-oriented programming (OOP) methods in the
development of scientific codes for solving problems typically described by
partial differential equations (PDESs). Implicit in these works was the desire
to create an OOP environment where a large-scale scientific-user code is
portable across a variety of architectures, where a user code is easily mod-
ifiable and maintainable, and where the solution process is efficient when
compared to serial, vector, or paralle]l FORTRAN environments.

For scientific codes OOP provides distinctions among the continuum
mathematics, the discretization of the mathematics, and the data structure.
For any given architecture, the concurrency in the OOP approach is im-
plemented internal to a small set of data structures (objects), and operations
upon these objects. which will be generally applicable to a wide class of
numerical procedures such as the finite difference and finite element meth-
ods. For emerging architectures involving massively parallel processors (MPP)
the greatest hindrance to the full exploitation of the concurrency offered
by distributed memory machines is that the programmer must explicitly
specify the layout of the data storage for traditional languages like FOR-

RAN (Angus and Thompkins 1989). A major benefit of OOP is that the
interface with a particular architecture can take place at the library-code
level, where the machine dependent details of data storage, synchronization,
and parallelism are implemented in lower-level objects, and not at the user-

'Assoc. Prof., Dept. of Civ. Engrg., Univ. of New Mexico, Albuquerque, NM
87131.

2Computer Sci., Kachina Technologies, Inc., Albuquerque, NM 87112,

3Prof., Dept. of Computer Sci., Univ. of New Mexico, Albuquerque, NM.

Note. Discussion open until March 1, 1993. Separate discussions should be sub-
mitted for the individual papers in this symposium. To extend the closing date one
month, a written request must be filed with the ASCE Manager of Journals. The
manuscript for this paper was submitted for review and possible publication on
August 11, 1991. This paper is part of the Journal of Computing in Civil Engineering,
Vol. 6, No. 4, October, 1992. ©ASCE, ISSN 0887-3801/92/0004-0497/$1.00 + $.15
per page. Paper No.2381.

497

code level, which deals with the high-level objects associated with the math-
ematics of the physical problem.

The key to efficient OOP implementation in any environment, however,
is to conceive an effective object-oriented design of the physical problem
and its mathematical abstraction. This requires understanding the physical
problem from the perspective of class structure, inheritance, and commu-
nication among classes. Angus and Thompkins (1989) propose to use data
structures that mimic the formalism of the governing partial differential
equations describing the mathematical abstraction of the physical problem.
For example, in this way high-level objects would involve the continuum
mathematics on the scalar and vector fields of the domain of the problem.
Also at this level would be the operators, such as the divergence and the
curl, that operate on the continuum fields. The next level of objects would
be defined on the discretized continuum, where a particular scalar field on
the continuum, for example, would become several special types of scalar
fields on the discrete lattice. At this second level discrete forms of the
operators and special classes of algorithms also would be specified, as well
as boundary conditions. It is interesting that the specification of boundary
conditions consumes most of the user code, but only a small amount (10%)
of the computing time (Angus and Thompkins 1989). At this second level,
and the highest level for that matter, there is no requirement as to how the
discrete-field data structures are actually mapped onto the processors of a
particular machine architecture.

The lowest level of object definition in this OOP hierarchy would imple-
ment the details peculiar to a particular hardware environment. And because
these details are independent of the type of continuum specified by the
PDEs, and because they are independent of the type of discretization em-
ployed, it seems prudent to encapsulate them within the lowest level objects
in library code so that they can be reused for other applications. At this
level the conversion operators need only know about the nature of the data
storage (which is architecture-dependent) of the two discrete field types
(scalar and vector) that they transform between (Angus and Thompkins
1989).

In terms of a particular OOP language implementation, Forslund et al.
(1990), have done some very interesting work with a plasma particle sim-
ulation code written in C++ . This plasma code, and numerous mass-trans-
port problems such as those in fluid dynamics, have been addressed in the
past using a variety of techniques like the particle-in-cell and vortex methods
(Lu and Ross 1991), which lend themselves naturally to object decompo-
sition. The code models the particles and fields (methods and data) of a
two-dimensional (2-D) problem as a quadtree region and of a three-dimen-
sional (3-D) problem as an octtree region in local coordinates. Although in
FORTRAN the governing PDEs are solved by block-diagonal linear-alge-
braic methods, the C++ approach used a local iterative solve on the regions,
then the continuum was solved through communication across boundary
layers between the regions. For example, a class “‘particle’ contains methods
for advancing plasma particles in response to the electromagnetic fields,
and “region” restricts the particles and fields to a particular space in the
continuum. A class “neighbor™ represents the overlap between adjoining
regions and provides the basic communication buffering between the re-
gions. A “region” would reside on a single processor in a parallel environ-
ment. As particles move around the discretized grid, they pass from one

498

region to another, and the fields communicate across the boundaries of each
region (Forstund et al. 1990).

Ideally, objects and the operations on them could be defined in the most
general mathematical form, and the libraries could determine what specific
operation is performed and even what specific discretization methodology
is optimal. Since it is difficult to automate the selection of a discretization
scheme, the user operations could occur at this level, retaining as much of
the elegance of the mathematics as possible. This was attempted quite suc-
cessfully previously (Angus and Thompkins 1989).

C++ enables one to design scientific codes in a more modular fashion
than 1s practical to do with FORTRAN, and it allows for much more flex-
ibility in the type of data structures used. A significant and compelling reason
to use C++, however, is the natural decomposition of the problem for
parallelization. The data and the methods in finite element or finite differ-
ence paradigms are kept together, providing all the information for solving
the equilibrium equations in the local grids. The development of a class
structure that makes maximum use of inheritance for distributed memory
is one goal. For example, in a finite element code an element might reside
on a single processor of some parallel framework.

This is the second of two papers describing OOP issues for scientific code
development. The first paper (Ross et al. 1992) discusses how a scientific
problem can be decomposed using object-oriented design for computer
modeling. In the present paper three simple scientific codes are used to
illustrate the potential of C++. The first is a one-dimensional (1-D) finite
element code that addresses the Newtonian equation of dynamic force equi-
librium. The code uses a Lagrangian coordinate formulation, and the equa-
tion solver is implicit (i.e., the resulting algebraic equations are solved
simultaneously). The second is a 1-D finite difference code that addresses
computational fluid dynamics (CFD). The code uses an Eulerian coordinate
formulation, and the equation solver is explicit (i.e., the difference equation
is solved recursively). The third code is a 2-D version of the 1-D CFD code.
While these simple codes are for linear 1-D and 2-D physical problems, the
object structure provided in the libraries is extensible in a straightforward
manner to higher-dimensional and nonlinear problems.

STRUCTURAL APPLICATIONS

Finite Element User Code

In order to demonstrate some preliminary object structure formulations,
a user code employing the finite element numerical method is presented
here for a very simple problem: the displacement of a copper bar attached
to a rigid wall on one end and subject to a dynamic force on the other. The
following governing equation (ordinary differential equation) represents this
structural dynamics problem

d*x
dar?

m + kx = f(r)

where m = the mass and k = the stiffness of the rod, x = the spatial
coordinate along the rod, ¢+ = time, and f(¢) = the dynamic force applied.
Fig. 1 is the user code to monitor distortions of a cooper rod due to a
dynamic force load. The structural dynamics problem is solved using an
implicit-solution method.
In a production environment, the input/output (I/O) for this user code

499

// force.C
V4
// dynamic force on a copper rod
V4
#include <stream.h>
#include <finite_elementh> // Kachina object libraries of Finite Element
main()
{
ImplicitGoverningEquation g=NEWTONI; // Newton's eqn of motion in 1-D
J/ LaGrangian grid is the default
LagrangianNodeField X;
Vector f;
ElementFieldl ¢; // specify a one dimensional problem
double area,time_step;
int 1,nodes,steps;
cin >> area; /[cross section of the bar

cin >> time_step >> steps;
cin >> nodes;
x.read_locations(nodes); // reads in location vector for "nodes” nodes
x[0].boundary(); // specifies node O as a boundary where

J/ displacement always equals zero
estandard_mapping(x); //ie. element i extends from node i to node i+1
e.cross_section() = area;
g.increment(time_step); J/ override default time step if set in NEWTONI1
e.material(al,M_COPPER_CAST); // all elements are copper
x.rest(); // initial condition, all nodes are at rest
f.set_size(nodes); f.assign_constant(0.0);

for(i=0; i<steps; i++)
{
cin >> flnodes-1]; // apply dynamic load to right end of bar
g.apply_force(e,£); // apply force to the element field
x[nodes-1].print_location(); // plot changing length of the bar
}
}

FIG. 1. User Code for 1-D Finite Element Model for Structural Dynamics Problem

should be somewhat different than what was just described. One can not
always count on having such nice initial conditions as everything at rest
(rest() applied to x) or to have the nodes so nicely arranged (stan-
dard_mapping from NodeField x to ElementField e), especially in higher
dimensional problems. It is likely that a finite element code like this will
have a graphical front end such that the user code is something like cin <<
bar_window (some parameters). One of the advantages of OOP is the ability
to seamlessly add new views to a preexisting object—in this case allowing
for graphical descriptions. Such graphical views can be anything from a
function that reads in information from a separate preprocessing package
and another that outputs to a separate postprocessing package (as is done
with most current FORTRAN codes) to routines that do pre- and postpro-
cessing interactively.

Note that nowhere in the user code are k (stiffness) or m (mass) directly
mentioned. The material M_COPPER_CAST knows about certain prop-
erties of copper, such as density and stiffness. Likewise ElementField e
learns the length of each element when the nodes are mapped into it; the
(constant) area is given by the user, and e then calculates the volume of

500

each element. The user next gives the material, Copper (Cu), and e can’
determine mass = density-volume, as well as stiffness = elastic modu-
lus-area/length. The velocity and acceleration at each node point is stored
within the LagrangianNodeField x.

Finite Difference User Code

The 1-D heat conduction problem involves a partial differential equation
relating the change in temperature, T, to position (x) along the bar as a
function of time (¢) and the coefficient of thermal diffusivity, k. The equation
is of the parabolic form and is given here

&L _or

T T Bp T teteeeeeeeeeeeeesasiiiiiiii ¢))
_ Fig. 2 illustrates message passing among the objects for this code (arrows
indicate information queries). Fig. 3 is the user code for a simple 1-D heat-
flux problem along an aluminum rod.

Brief Explanation of Finite Difference Code

Fig. 2 shows how data is hidden in this problem. Each individual node
knows its material type and from this the NodeField (EulerianNodeField
to be specific) that it is associated with can determine useful extremal prop-
erties. In the 1-D example, all nodes are of the same material, but if there
were a rod made of two or more materials, the material with the largest
coefficient of thermal diffusion would determine the time step for solving
the problem.

The thing that is interesting about the inner workings of the finite dif-
ference user code shown in Fig. 3 is that the explicit solver knows nothing
about boundary conditions. It is a stmple recursion equation of the form

forall i Tl =T+ MTiy = 2T+ T0y) oo, @)

where A = the stability number of the problem; the default is 1/2 in
HEAT_FLUX_1.

_ The solver is written to treat all nodes as internal. The boundaries vector
in the code is composed of one of two values for each node (to designate
that the node is either a heat source/sink or internal). The
make_temp_boundary() method associates this input vector with the node
field. All that is necessary to change the boundary conditions is to alter the
data file. The governing equation (and the explicit solver embedded therein)
would be left unchanged.

Material
-k
-p
-C
mmv:oﬁ.mméi:omncm:.o: EulerianNodeField Node1
explicit solver o ©Xtreme material info. * material
* k= k/pC * temperature vector * boundary

FIG. 2. Message Passing in Finite Difference Code

501

// hback.C

// heat transfer along an aluminum bar

Vi temperatures are in degrees Celsius, length is in cm
/7 sensitivity to change is in degrees C per second

#include <stream.h> // system /O library
#include "finite_difference.h" // Kachina FD libraries

main()
{
int intervals,num_nodes;
double sensitivity,deliax,length,lambda,time_checks;
vector temp,boundaries;
// k(d2Temp/dx2) = dTemp/dt, k is coef of thermal diffusivity
/fHEAT_FLUX_1 is an explicit forward solver
ExplicitGoverningEquation g = HEAT_FLUX_1;
EulerianNodeField n(TEMP); // fixed grid, concerned with temperature at
// each node and nothing else

cin >> length >> num_nodes;
cin >> sensitivity >> lambda >> time_checks >> intervals;

n.init_set_size(num_nodes); I# om.zomom in n.:n field
n.assoc_field_material(M_ALUMINUM_CAST); //rod is all aluminum

// initial temperatures and boundary conditions
temp.set_size(num_nodes); cin >> temp;)
boundaries.set_size(num_nodes); cin >> boundaries;

n.init_temp(temp);

n.make_temp_boundary(boundaries);

deltax = (double) length / (double)(num_nodes - 1);
n.set_locations(0.0,deltax); // location in space of each node

g.set_lambda(lambda); /I stability #)
g-assoc_node_field(n); // what equation g will operate on

cout << form("deltat = %If, deltax = %lf\n",g.get_deltat(),deltax);
for(i=1: i<=intervals; i++)

{

g.step_for(time_checks);

cout << form("at %8.21f seconds: ",i*time_checks) << n.get_temp();

}

// applies explicit solver untl no node changes temp by > sensitivity ina
// single time step (which is dependent cn the stability number lambda
g.converge(sensitivity);
cout << "Stabilized Temperature at Node Pointsi\n" << n.print_temp();

FIG. 3. User Code for 1-D Heat-Conduction Problem Using Finite Differences

The implementation of the recursive equation just shown is by passing
messages to the associated node field to change each node according to the
formula, and the node field in turn passes a message to the node to change
its temperature. If a node is a temperature-boundary node (heat source/
sink), it simply ignores the message. While boundary conditions are not
difficult to model in 1-D, many 2-D and-3-D problems can be fairly easily
discretized at the interior, but dealing with boundaries turns a simple explicit
solver into a nightmare in FORTRAN. In this object-oriented system, the
discrete solver is simply written as if all nodes were on the interior, and the

502

boundary nodes modify the operation or cancel the operation themselves
as necessary.

Note that the user never refers to k (the coefficient of thermal diffusivity)
or Ar (the increment of each time step). The governing equation, g, sets

AE= N 3)

where N = stability number and k& = largest k£ in any node.

The governing equation, g. knows the values of Ax and & from querying
the node field; the node field determines k by querying the nodes. The
stability number, X\, can be changed by the user, but it defaults to A = 1/2
in HEAT_FLUX_1. Note that changing the stability number, by using the
set_lambda() method (sending the message set lambda() to the governing
equation, g) automatically modifies the underlying time step. The user can
check temperature flux over time by using the step_for() method. The
steady-state temperature distribution can be found by using the converge()
method, which simply applies the solver at each time step. It iterates if the
temperature at any node has changed by more than a user prescribed tol-
erance, otherwise converge() will halt.

Expansion from 1-D to 2-D Finite Difference Codes

Notice that the fiuite difference user code for a 2-D heat-transfer problem
given in Fig. 4 is almost identical to the user code for the 1-D problem (Fig.
3). What is happening in each case is fundamentally the same. but with an
added spatial dimension. The logic behind the 2-D code is identical to that
of the 1-D code.

In an object-oriented environment, communication is through a message
interface that need not reflect the underlying data structure. This allows
polymorphism in message passing—using the same name for the same op-
eration on different types of objects and letting the object do the work of
interpreting that message correctly. For example, the function print_location()
attached to a node “*knows™ to print only an x coordinate for a 1-D node
but to print x and y coordinates if it is attached to a 2-D node.

The solver has no knowledge of temperature-boundary conditions.
Boundary conditions are input through the boundaries matrix in the 2-D
code in the same manner as through the boundaries vector in the 1-D code.
As in the case with the 1-D code. the solver treats all nodes as internal and
sends change_temperature() messages to each node based on this. The node
knows if it is a boundary and alters or ignores the message as appropriate.

It is important to note that 2-D nodes (Node2) are derived from 1-D
nodes (Nodel) and that all information applicable to a 1-D node is inherited
by the 2-D node, with certain functions added that apply strictly to the
second dimension. Also, the meaning of some functions is overridden in
the derived type—such as print_location() just mentioned.

The comments about proper I/O handling given after the finite element
code hold for the two finite difference codes. The need to encapsulate /O
details in functions naming the concept becomes more important as the
dimensionality of the problem increases. .

OBJecT LIBRARY STRUCTURE

The ultimate goal is to build a C++ library of mathematical and engi-
neering objects that allows for relatively simple user code for scientific

503

// hback2.C

/I heat wansfer on an aluminum plawe

Vi p res are in degrees Celsius, length is in cm
\\.wnnmmgBormumamwmbnoﬁaaOvﬁ.woga

#include <stream.h> // system [/O library
#include "fd2.h" // Kachina FD libraries -

o

int intervals,num_rows,num_columns;

double sensitivitydeltax length,deltay,width,lambda,time_checks;

marix temp,boundaries;
J{ k(d2Temp/ds2) = dTemp/dt, k is coef of thermal diffusivity, s=(x,y)
JIHEAT_FLUX_2 is an explicit forward solver

ExplicitGoverningEquation2 g = HEAT_FLUX_2;

FEulerianNodeFicld2 n(TEMP); /I fixed grid, concerned with temperature at

J/ each node and nothing else

cin >> length >> width >> num_rows >> num_columns;
cin >> sensitivity >> lambda >> time_checks >> intervals;

n.init_set size(num_rows,num_columns); /1 % of nodes in the field
n.assoc._field_material(M_ALUMINUM_CAST); //rod is all aluminum

// initial \emperatures and boundary conditions
temp.set_size(num_rows,num_columns); ¢in >> temp;
boundaries.set_size(num_rows,num_columns); cin >> boundaries;

n.init_temp(temp);

n.make_temp_boundary(boundaries);

deltax = (double) length / (double)(num_rows - 1);

deltay = (double) width / {(double)(num_columns - 1);
n.set_locations(0.0,deltax deltay); // location in space of each node

g-set_lambda(lambda); /I stability #
g.assoc_node_ficld(n); J/ what equation g will operate on

cout << form("deitat = %If, deltax = %lf deltay = %lf\n",
g.get_deltat(,deltax,deltay);
for(i=1; i<=intervals; i++)
{
g-step_for(time_checks);
cout << form("at %8.2If seconds: ",i*time_checks) << n.get_temp();

}
J/ applies explicit solver until no node changes temp by > sensitivity in a
// single time step (which is dependent on the stability number lambda
g.converge(sensitivity);
cout << "Stabilized Temperature at Node Points:\n" << n.print_temp();
}

FIG. 4. User Code for 2-D Heat-Conduction Problem Using Finite Differences

applications. This would allow a good scientist who was also a naive pro-
grammer to program directly from representations he or she is comfortable
with and count on the underlying libraries to make this efficient.

Fig. 5 shows the conceptual framework for some of our libraries. The
arrows indicate class derivation. The creation of general libraries reduces
the work necessary to expand the user code from 1-D to 2-D and 3-D
problems.

A properly designed object library has a robustness that can not be matched
by FORTRAN. The changes to the user code necessary to calculate heat
flux in 2-D are accomplished by simply specifying 2-D nodes in the node
field, g = HEAT_FLUX 2 in the governing equation, and telling the node
field how many nodes it has in each dimension.

Fig. 5 is included to provide a feel for how somewhat different problems
would be handled. The lowest-level object conceptually is the material model.

504

GoverningEguation NodeField
_ mxuzo=1_ m::u:o; _ m Eulerian ‘rmo-m:omm:_
LagrangianNode1 =

LagrangianNode2 |

™ LagrangianNode3 <

Material

FiG. 5. Objects and Object Hierarchy in the Finite Difference C++ Library

It allows you to describe a material, give it a name, and define certain
properties of the material (e.g., density, coefficient of expansion, etc.).
Properties of a material are thus encapsulated by its name (e.g.
M_ALUMINUM_CAST in the finite difference code examples). ,

Nodes inherit information from parent classes (e.g., Node2 inherits from
Nodel) as well as from Material (i.e., a node knows its material composi-
tion). The basic node is a 1-D Eulerian node (Nedel). A 2-D Eulerian node
(Node2) is just a 1-D node (Nodel) with a few extra variables and methods
and a 3-D node is likewise derived. Lagrangian nodes are similar to Eulerian
nodes with displacement (and rate of displacement) data and methods added.
Some methods have slightly different meaning based on dimensionality (e.g.
set_locations() has differing components to a location) and these are m:dmv_vw
rewritten at each level. Since they maintain the same name, the user code
does not change.

The highest-level objects in these libraries are governing equations and
node fields. Node fields utilize properties encapsulated in the nodes asso-
ciated with these fields. The current library has a rather ugly implementation
of node fields mainly due to type restrictions within class declarations (solved
by the introduction of templates, described later in this paper).

_ Since governing equations are conceptually operators on objects like node
fields, it might at first seem more intuitive to model them as messages rather
than as objects. However, this would require designing multiparameter
messages with variable relationships among these parameters in order to
deal with equations in general. The writers view governing equations as
objects in their own right that pass messages to and from the node fields.

Ormimizing OOP CobE

OOP versus FORTRAN vis-a-vis Optimization
A common complaint about OOP techniques is that they are most val-
uable in an idealized computing environment. The argument is that all the

505

gains in clarity and code reuse come at a cost in resources, such as memory
and CPU cycles, that is prohibitive for serious scientific codes. Indeed, there
are important differences between programming for a business community
with inexpensive computing power far in excess of its basic needs and pro-
gramming for cutting-edge scientific codes that strain the limits of the most
advanced hardware. The OOP community has been very slow to address
these differences.

It is necessary to distinguish between the writers of user code and the
writers of library code. This distinction is made in the FORTRAN com-
munity (not everyone writes LINPACK routines), but it has added power
when applied to an OOP language such as C++. As mentioned previously,
the scientist writing user code in an OOP language need not know or care
about the underlying data structure, and, as shall be seen, the user code
programmer need not even be fully cognizant of what kind of routines are
being called or even when such routines are called.

The life of a library-code designer/modifier is not so carefree. The OOP
community has not fully come to grips with this fact, often relying on future
compiler technology to solve any problems. Yes, there is increased code
reuse even at this level, and, yes, modularity and encapsulation make an
OOP language library code easier to modify than a FORTRAN library
code, but in most cases greater care is needed in initial design of an OOP
language style library than a FORTRAN style library. Some problems will
be most naturally solved at the compiler level, and the solution will require
compilers that are in some ways “smarter” than FORTRAN needs to be,
but it is necessary to isolate what compiler techniques can be reasonably
implemented now in order to justify the use of OOP in cutting edge appli-
cations now.

There are two key problems in optimizing OOP code:

1. While OOP lets the programmer ireat conceptual objects as funda-
mental data types, it does not necessarily let the compiler recognize, and
make use of. the properties of these objects in the same manner as a hard-
wired data type like an integer.

2. In FORTRAN, a system being modeled must be treated as an “‘object

of arrays” whereas an OOP language allows the more natural view of an
“array of objects.”
Unfortunately, it is often easier for a compiler to do optimization at the
array level, and in some cases it may be wise to develop tools that allow a
compiler to “‘see” that an “array of objects™ can also be viewed as an “object
of arrays™ and do optimization accordingly. While this is in some sense a
subset of the first problem, it is important enough, and solvable enough,
to deserve special attention.

Fundamental Data-Type Example
In C++, two matrices can be added together and stored in a third by
the simple and elegant construction:

A= B 4 € oo (4)

which brings to mind the way a programmer would add two integers and
store the result in the third:

T 2 S (5)

but, in terms of a compiler’s ability to optimize. these statements are not
at all similar! In (5). the compiler knows what the operators + and = mean
when applied to integers and can compile this statement into

move c,a move contents of ¢ into a
add b.a add contents of b to contents of a and put result in a

but, in instruction (4), the compiler does not know the semantics of + and
= and must evaluate this statement from the bottom up. (Recall that +
and = on matrices invoke methods defined outside the scope of the com-
piler.) A naive implementation of matrices and the operators + and = in
C++ will compile into something of the form:

add B.C.TEMP put contents of B+ C into TEMP
move TEMP.A move contents of TEMP into A

Since A, B, and C could easily be huge matrices, this extra copy could
be very expensive. Note that adding three matrices (A = B + C + D)
would result in the creation of two temporaries along the way.

There are several methods of solving this particular problem. One might
be to have operators such as + and * do nothing but build expression trees
that operator = solves. As an example, for A = B + C + D, operator =
would be handled as shown in Fig. 6, and it could be evaluated from the
top down in the same manner that the compiler would solve (4). This is
probably not the most elegant way of dealing with this problem, but it is
presented here because it motivates an example of inherent OOP efficiency
later in this article.

This case could be dealt with by semantic constructions in the language
(Cline and Lea 1990) that allowed the programmer to specify fundamental
properties of an object (e.g., matrix addition is associative and commutative,
A = (expr) assigns to 4), but it is not at all clear that compilers that can
handle such things well in the general case will be around any time soon.

Object of Arrays versus Array of Objects Example
Suppose some physical system is being modeled by a finite difference
method. Conceptually, there exists a node field where each node has several

/N

+ A +
/\ implying AN
+ D =—m———==> 4+ D

AN N\
B C B C

FIG. 6. Expressiontreefor A=B + C + D

EFORTRAN OQQP Language

TEMP(1) Node 1l Temperature

TEMP(2) | Forces

TEMP(3) I ...

TEMP(N) T
Node N

FIG. 7. Data Layout for Example in FORTRAN Arrays and OOP Array of Objects
507

attributes such as temperature, force(s) acting on it, material composition,
and properties, etc. FORTRAN forces this to be programmed as several
arrays (e.g., TEMP, FORCE1, FORCEZ2) with operations being coded in
terms of these arrays. An OOP language would allow us to create a node
field made of nodes where each node has various properties—closer to
intuition. Now, consider a piece of code to modify the temperature of the
nodes in this system. In FORTRAN, this would act on the array TEMP,
whereas in an OOP language it would apply temperature changes to the
node field. Further consider the data layout implicit in this example, as
illustrated in Fig. 7.

Suppose this piece of code is running on a serial or vector machine with
a large data cache. In the FORTRAN case. it is fairly straightforward for
the compiler to throw the TEMP array into the cache for the span of the
code that modifies temperature. It is not at all trivial to do the same thing
in the OOP language “‘array of objects” case. How does the compiler know
to pluck out a particular member of each object, line these members up in
the cache, and then proceed to execute the code?

This could be done with some modification at the node field level—
actually laying out storage so that members stay together and altering ac-
cessor functions so that they resolve to “object of array™ form. This loses
a lot of the benefits of OOP. When taken to the extreme, it is little more
than writing FORTRAN in a more trendy language. The user code remains
clean, but the library-code writer is now moving towards a FORTRAN
coding style. This is an example of an efficiency problem that should at least
be partially solved at the compiler level.

Actually, because of modularization in OOP languages like C++ . it is
not too difficult to start with an inefficient yet clean object structure, and
add efficiency improvements without breaking down the structure. Our
libraries originally specified nodes as just described, with node fields being
instantiated as a vector of nodes with some controlling parameters (e.g.,
size) and methods (e.g., print_locations). Later, temperature and force
components were removed from the nodes and equivalent vectors were
added to the node fields. This was done originally to save space, but it
solves this problem as well. (The declaration EulerianNodeField n (TEMP)
means to declare a node field that will worry about temperature, but not
force. When the size of the node field is established, space is reserved for
a vector of temperatures but not for a vector of forces.)

As discussed earlier, our original conception of the internals of changing
temperature was as follows: tell the node field to change temperature ac-
cording to some rule; the node field tells each node to change its temperature
treating all nodes as internai, the node then checks to see if it is internal or
a boundary—applying, modifying. or ignoring the message depending on
its boundary status. When temperature is moved out of the nodes, the node
field’s change_temperature routine must now be modified to query each
node as to its boundary state and proceed accordingly.

This moves away from the intuition of the OOP method. While it is still
cleaner than FORTRAN, and while this change results in no modification
to user code. it makes life a little tougher for the implementer of library
code. In particular, temperature data layout and routines will require mod-
ification on two types of objects (nodes and node fields) in order to be
efficient on an MPP architecture.

508

Advantages of OOP Languages in Optimization

In optimization, all is not merely a game of catchup with FORTRAN.
For example, consider the expression evaluator mentioned for matrices just
presented. Such an expression evaluator has the potential to not only catch
up with but actually surpass the efficiency of the FORTRAN matrix op-
eration by function call paradigm. For example, if we have As*# = Bs>+*
Co>s*Pr>b where s 1s small and b is big, an expression evaluator could know
to change B*(C*D) to (B*C)*D because it provides the same result with
fewer computations. In FORTRAN, if there exists a subroutine

MATMUL (Product, Left-Matrix, Right-Matrix, Rows-in-Left-Matrix,
Columns-in-Left-Matrix, Columns-in-Right-Matrix)

to multiply two matrices, the user needs to know that

MATMUL(Tmpl,B.C.s,b.s)
MATMUL(A,Tmp1.,D,s,s.b)

is superior to

MATMUL(Tmp2.C.D.b.s.b)
MATMUL(A,B.Tmp2.s.b.b)

By the same token, a matrix could “‘know™ many properties about itself
such as whether it is sparse. A matrix input routine could cheaply test for
this property and the library could determine which matrix multiply routine
to call depending on whether the operands are sparse. The user need not
W:oé about the efficiency advantages of sparsity—the code would just run
aster.

Also, lets consider a machine with a large data cache as in the “object
of arrays” example, but this time code is being constructed that acts on a
number of attributes of a node all at once, and spends a lot of time at each
given node. Since C++ (for example) has control of its own memory man-
agement, a programmer could rewrite the object creation/delete routines
to align objects properly in the cache. This is an extremely straightforward
operation in C++, but extremely difficult (at the library OR the compiler
level) in FORTRAN.

C++ as OOP LanGuAaGE FOR ScienTIFiIC CODES

C++ was the language of choice for our research (Wagner et al. 1991)
in part because it is not a pure object-oriented language. One of the key
design goals of the language can be stated as “‘you should not have to pay
(in storage, CPU time, etc.) for what you do not use.” Most OOP languages
were designed with the overriding goal of mirroring a clean object-oriented
paradigm, without regard for efficiency at the language design level, and
programmers pay an efficiency penalty for this.

One nice feature of C++ is the ability to inline small functions. Consider
the problem of adding two matrices that are stored as a series of row vectors.
A straightforward implementation of the + function would be of the form:

matrix operator + {matrix& A, matrix& B}
{
for { 0< =i<=rows}
Sumli] = A[i]+ Bli];
return Sum;

}

where A[i] invokes the [] operator of the matrix class, which returns the ith
row vector associated with A, and the line A[/]+ B[i] invokes operator +
of the vector class. The operator + for vectors would look similar, making
calls on operator [] for the class vector. Conceptually. if a user types A + B,
this invokes the function + for matrices, which invokes the matrix [] function
and the vector + function for each row in A and B. The vector + function
will then invoke vector [] function for each column element. Thus, a simple
statement (A + B) can represent a lot of potentially expensive function calls
for very little actual code. Adding the keywork inline in front of a function
definition requests that the compiler inline expand the code rather than
make a function call. In the example above, inlining the appropriate func-
tions means that the user code A + B will compile to a simple nested loop
with no function calls. Whether or not a message is a function call or inline
expanded has no effect on the semantics of calling that message. This elim-
inates function call overhead at run time, but can lead to increased object
file size if applied to large functions.

For a more fundamental example, default name resolution in C++ is
static. which is to say that objects and messages between them are bound
at compile time. In a pure OOP language (e.g.. Smalltalk) name resolution
is dynamic, which is to say binding is done at run time and thus incurs a
run time penalty. An overall goal of C++ is to “do the object-oriented
material that can be done at compile time.” therefore bypassing many of
the run-time costs involved in the object-oriented paradigra. So long as
name resolution is static. good software tools can determine many useful
things at compile time. For example, they could determine that many func-
tions within an object semilattice will not be accessed by a particular piece
of code, thereby greatly reducing the size of object files. In many object-
oriented languages, name resolution is far more (perhaps totally) dynamic,
and such optimizations are far more difficult to implement.

Dynamic name resolution, is, however, a very powerful feature of OCP,
and C++ does allow this. after a fashion. By declaring a class or function
to be “virtual.” the user is directing the program to determine the relevant
typing information at run time. If the user derives everything from a virtual
base class. he has gained much of the power of the totally dynamic system,
but he has lost much of the optimization ability.

Since C++ lets the user choose the type of name resolution, and the
compiler knows what is and is not statically resolved, this largely allows the
builder of the library to determine whether these efficiency trade-offs are
desirable. When incorporating other people’s work, however, different views
of the importance of efficiency may lead to performance trade-offs that are
not apparent to the user. (In other words, class browsers should access
comments about efficiency and other considerations involved in the creation
of various object libraries.) This problem is by no means unique to object-
oriented methods.

Run-time Debugging

One of the pleasures of writing in C++ is that, because of the inherent
modularization, it is obvious where to test for errors in function usage and
it is natural to do so. An example of the usefulness of this is given here. If
one improperly mixes matrices in 2 FORTRAN package there is likely to
be some cryptic message from the assembler, if not simply incorrect results,
whereas in C++ one will get something of the form

“In matrix multiply (operator*) column size of first matrix is unequal to
row size of second.”

510

While this is very nice for debugging purposes. it does present two im-
mediate problems.

o This C++ message does not provide the user with a trace of exactly
where and in what state the error occurred. If the user is relying on
a C++ to C translation, the debugger might not give this infor-
mation cleanly.

» This run-time checking slows the user down. If a matrix is made up
of vectors, similar checks may well occur at the matrix and vector
class level for all matrix operations. In some instances, this checking
could quite be time-consuming.

These problems could be solved by a modification to C++ that allows
“semifree” run-time debugging. When writing matrix classes, a class of
commands that could have access to stack information (to provide a state
trace) and that were switchable at compile time so that no run-time penalty
would be incurred in production code is desirable. The method used now
is to wrap run-time checking with C preprocessor directives. a method that
is neither pretty nor robust.

The language Eiffel has addressed these two problems in an elegant and
efficient manner (Meyer 1989). A routine is thought of as a contract between
the caller and the callee. It has associated with it preconditions, which must
be satisfied by the caller, and postconditions. which must be satisfied by
the callee upon return to the caller. A vector-add operation might have
precondition (sizes are equal) and a postcondition (true). Condition check-
ing is switchable at compile time. There is no problem with cross-compiling
libraries where some have condition checking and some do not.

An Eiffellike solution could be easily implemented in the same form in
C++ . but there may be trace problems when using C+ + to C translators.
At least one version of C++ incorporating Eiffellike constructs has been
implemented (Cline and Lea 1990). Given that many small functions are
inlined by C+ + (to avoid the cost of a function call) tracing where something
“really” occurred in the C++ source could be difficult. A slightly modified
form could be to provide the equivalent of C's_LINE_and_FILE_ directives
and let the programmer write a precondition with failure directives (gen-
erally, print error message and halt) having access to the “‘real” location of
the call in the C++ source. The problem is essentially one of exception
handling, and language constructs for C++ to deal with exception handling
are being debated by the ANSI C++ Standards Committee now.

Templates

A template (also known as a parameterized type) allows one to apply a
type or types to a class declaration. The type specific class, as well as all
type specific member functions, are automatically generated at compile time
from the templates. For example

vector<T> {...
<T> *data

could be the source code (template) for a generic vector object of unspecified
type. while

511

P —— ——

vector<int> ivec;
vector<Node2> nvec:

would direct the compiler to generate the class and associated functions for
a vector of integer and a vector of 2-D nodes automatically. C-++ afficio-
nados will note that the declarations in our user codes (Figs. 1. 3, and 4)
are not in template form. This is because we did not have a version of C++
with true templates when these codes were first written.])

Ideally. each conceptual object would be a C++ class, with each derived
class defining only those functions and data specific to it, while inheriting
the more general information from ancestor classes. The node C+ + classes
map in exactly this manner. A 2-D Eulerian node (node2) inherits all the
properties of a 1-D Eulerian node (nodel) plus various data and methods
pertaining to the second dimension. In addition, node2 overwrites those
functions whose meanings have changed slightly (e.g.. read_location).

However. the node field objects are handled in a far more cumbersome
manner. The lack of templates in the C++ implementation used over the
course of this project led to some “ugly code™ for 1-D node fields as well
as a rather bizarre extension to 2-D node fields. Our libraries contain several
routines with identical code within EulerianNodeFieldl and Lagrangian-
NodeFieldl, which are both derived from NodeFieldl (the 1-D node field
structures). Conceptually. the user would want to write these routines once
in NodeField]l with the two derived types inheriting these routines. The
reason this can not be done under the current implementation is that the
routines reference a vector of nodes attached to the fields. and the type of
node depends on the type of field. This problem is compounded by addi-
tional layers of object dependencies within a type hierarchy, such as the
dependence of governing equations on the type of the associated node field.
Also. the 2-D node fields should be derived from 1-D node fields in the
same way that 2-D nodes are derived from 1-D nodes. Because of the code
duplication problems presented by these embedded types. the node field
C+ + classes are entirely new structures for each dimension. (i.c.. 2-D node
fields are specified in their entirety rather than inheriting those character-
istics common to 1-D node fields)

It would be helpful to declare something of the form,

NodeField<Node2> or NodeField<LagrangianNodel>
and have it generate the body of
EulerianNodeField2 or LagrangianNedeFieldl

which allows node fields to inherit data and functions that have the same
basic outline with the only difference being the type of node they operate
on: in other words, a certain amount of polymorphism would be beneficial.
This becomes even more important when a class is doubly type dependent,
such as with the governing equation hierarchy. Experience in writing these
object libraries has led us to the conclusion that templates are essential to
realizing code reuse and maintenance goals. Since our user codes were first
written, templates have been fully incorporated into C++.

SUMMARY

Several current OQOP languages were designed under the assumption that
computing power is cheap while programmer time is expensive and growing

512

more so as computers are allotted more complex tasks. Unfortunately,
computing power is very expensive in the domain of large scale scientific
codes and likely to remain so for the near future. It is our belief that C++
can be made comparable in efficiency to FORTRAN using established com-
piler writing techniques (Wagner et al. 1991).

Since run-time efficiency is desired without waiting for the development
of compilers to solve all optimization problems. the job of the library code
programmer, as opposed to the crafter of user code, will remain more
difficult than some OOP proponents believe. Still, OOP is an improvement
over previous techniques even at this level, and it should be noted that a
user code/library code dichotomy that makes creation, modification, and
efficient porting of user code much easier is possible and even natural using
OOP techniques. It is the authors’ opinion that a great deal of the effort
involved in crafting user code for large scientific applications is a direct
result of the weak distinction between user and library code given current
programming practices and languages used in this domain.

Although much remains to be done to make OOP a more realistic and
useful paradigm for scientists and engineers in their attempts to model the
physical world, the few works cited in this field have shown tremendous
potential. Although there has been a great deal of work in other OOP
ianguages (e.g., Smalltalk, Eiffel, CLOS), recent works in scientific code
development using OOP environments have concentrated primarily on C++.
An earlier work {Angus and Thompkins 1989) reports on the efficiency of
“naive” C++ code recompiled for various serial and parallel architectures
versus C code optimized for each environment and shows the C code to be
more efficient by factors ranging from 1.5 to 3. In addition to this, another
work (Forslund et al. 1990) cites that the efficiency of FORTRAN over
C++ varles between a factor of 1.7 for nonoptimized FORTRAN to a
factor of 2.2 for vectorized FORTRAN for a single-processor architecture.
Although these factors may seem disappointing for OOP proponents, they
actually bode tremendous potential for C++ given the facts that:

1. The C++ user code can be considerably less than FORTRAN user
code and this ratio becomes more pronounced as codes become more com-
plex.

2. The C++ user code is highly modular with a library of reusable ob-
jects.

3. The granularity of C+ + code objects can be controlled to be consistent
with the new MPP architectures without changes in user code.

4. Dynamic load balancing among processors for MPP architectures will
prove to be easier for OOP codes because the structure allows for the
dynamic reconfiguration of numerical grids.

5. Current C++ compilers are in their infancy and improving rapidly
(Wagner et al. 1991).

ACKNOWLEDGMENT

The writers are grateful to the Air Force’s Phillips Laboratory for spon-
soring this research under contract F29601-90-C-0046. The writers wish to
thank Dr. Ian Angus, Boeing Computer Services, for his early discussions
and results; Drs. David Forslund and Stephen Pope of the Los Alamos
National Laboratory; and Mr. Paul Morrow of the Phillips Laboratory for
their comments and suggestions during the course of this research. We are

513

also grateful to Dr. Robert Ballance, Kachina Technologies, Inc., for his
thoughts on optimization of OOP codes.

ApPeEnDiX |. REFERENCES

Angus, 1. G.. and Thompkins. W. T. (1989). “"Data storage, concurrency. and port-
ability: an object oriented approach to fluid mechanics.” Proc. 4th Conf. or Hy-
percubes, Concurrent Compuring, and Applications, lnstitute of Electronic and
Electrical Engineers, Mar.

Cline, M. P., and Lea. D. (1990). ““The behavior of C++ classes.” Proc. Symp. on
Object Oriented Programming— Practical Applications. Mavist College. Sep. 81—
91.

Filho. J. S. R. A., and Devloo, P. R. B.(1991). “*Object oriented programming ir
scientific computations: the beginning of a new era.”” Eng. Comput.. 8(1). 81-87.

Forslund. D.. Wingate, C.. Ford. P.. Junkins, S., Jackson, J., and Pope. S. (1990).
“Experiences in writing a distributed particle simulatien code in C++." Proc.
1990 Usenix C+-+ Conf., Usenix Association, 117-190.

Lu. Z. L.. and Ross. T. J. (1991). “Diffusing-vortex numerical scheme for solving
incompressible Navier-Stokes equations.”™ J. Computational Physics, 95(2), 400—
436.

Meyer. B. (1989). “*Writing correct software in Eiffel.”” Dr. Dobb’s J., 14(158). 28—
36.

Peskin., R. L.. and Russo. M. F. (1988). “An object-oriented system environment
for partial differential equation solution.™ Proc. ASME Computations in Engrg..
American Society of Mechanical Engineers. 409-415.

Ross. T.., Wagner. L., and Luger. G. (1992). “Object oriented programming for
scientific codes: thoughts and concepts.” J. Comp. in Civ. Engrg.. ASCE, 6(4).
480-496.

Wagner, L.. Luger. G.. and Ross, T. (1991). ““Object-oriented programming in C++

. on the Cray for scientific codes.” Tech. Report PL-TR-91-1037. Phillips Labora-
tory. Kirtland Air Force Base. Albuguerque, N.M.

